« Попередня Наступна »

ВІЛЬЯМ Госсетом (псевдо. Стьюдента) (1872 - 1936)


Вільям Госсет викладав математику та хімію в Венчесторе і Оксварде.
У 1908 р вчений опублікував працю під псевдонімом Стьюдент. Госсет В. опублікував праці з теорії ймовірності та математичної статистики.
У цих працях він отримав статистичне оцінювання критеріїв, узагальнене розподіл, дріб Стьюдента, стьюдентезірованное відхилення.
 Госсет В. отримав одне з найбільш важливих статистичних розподілів, ґ-розподіл Стьюдента. Було доведено, що ймовірність помилки вибіркової середньої залежить від обсягу вибірки.
Госсет В. вніс величезний внесок у розвиток математичної статистики.
« Попередня Наступна »
= Перейти до змісту підручника =

ВІЛЬЯМ Госсетом (псевдо. Стьюдента) (1872 - 1936)

  1. § 6. Розподіл Стьюдента (t-розподіл)
    Аналізуючи випадкові відхилення вибіркової середньої x від істинного середнього значення досліджуваної випадкової величини?, Англійський статистик В. Госсет (писав під псевдонімом «Стьюдент») отримав наступний результат. Нехай {foto21} - незалежні (о2) -нормально розподілені випадкові величини. Тоді щільність розподілу випадкової величини: {foto22} описується функцією: {foto23}
  2. Фактичне значення t-критерію Стьюдента
    tb = b / mb;
  3. § 5. Перевірка статистичної значущості коефіцієнтів парної лінійної регресії
    В основі лежить наступне важливе твердження: випадкові змінні {foto53} підпорядковуються центральному розподілу Стьюдента (© розподілу) з (n-2) ступенями свободи. При перевірці гіпотези H0: bj = 0 проти альтернативної гіпотези H1: bj Ф 0, для коефіцієнтів b0 і b1 розраховується абсолютна величина 7-статистики: {foto54} При виконанні вихідних передумов моделі ці дроби мають
  4. 4. Резюме
    Розрахунки і аналіз національного доходу, проведені Петті, Кінгом і навіть Давенанта, який був їх інтелектуальним боржником, носили широкий характер і висвітлювали багато питань. Протягом двох наступних століть вони залишалися неперевершеними за своїм масштабом та якістю. Колін Кларк в передмові до першого видання своєї книги «Умови економічного прогресу» (1940) вірно зауважив, що
  5. Приватний F-критерій Фішера моделі множинної регресії для фактора х}:
    R 2 - R 2 n - m - 1 yx1 ... xi ... xm yx1 ... x (i-1) x (i + 1) ... xm .j. nm 1 F ^ = 1 - R 2. 1 yx1 ... xi ... xm де в чисельнику показаний приріст частки поясненої варіації y за рахунок додаткового включення в модель відповідного фактора. А в знаменнику - частка залишкової варіації за регресійної моделі, що включає повний набір факторів. t-критерій Стьюдента для коефіцієнта регресії при i - м факторі b =
  6. 6.6. Ряди з квадратичним трендом.
    Треба розглянути ще й випадок, коли з поведінки траєкторії ряду можна підозрювати наявність у нього детермінованого квадратичного тренду. . Тут наявність єдиного одиничного кореня може здійснюватися вже у формі трьох різних DGP: (А) x_ = x_-1 + є_, (б) xt = a + xt-1 + et, a ф 0, (в) xt = a + в t + xt-1 + et, в Ф 0. Останній випадок гарантує наявність квадратичного тренду; в двох
  7. § 4. Перевірка статистичної значущості коефіцієнтів рівняння регресії
    Побудова емпіричного рівняння регресії - початковий етап економетричного аналізу. Перше ж побудоване за вибіркою рівняння регресії дуже рідко є задовольни тельним з тих чи інших характеристикам. Тому наступною найважливішим завданням економетричного аналізу буде перевірка якості рівняння регресії. Перевірка статистичного якості оціненого рівняння регресії
  8. 7. Порівняння результатів розрахунків за два століття
    Тепер ми можемо звести воєдино, в одну таблицю, результати тринадцяти розрахунків, розглянутих вище і вироблених в Англії протягом двох зазначених століть. Ці дані показують, що національний дохід у розрахунку на душу населення зріс з 7 ф. ст. 1676 р і 8 ф. ст. в 1700 р приблизно до 9 ф. ст. в 1744 р (з поправкою на перебільшення Деккером чисельності населення) і до 20 ф. ст. в 1799 р
  9. § 9. Визначення критичних значень розподілів Стьюдента і Фішер
    з використанням програми Microsoft Office Excel Слід вважати, що елементарні навички роботи в Microsoft Office Excel мають всі студенти. Для того щоб визначити критичне значення t-статистики Стьюдента, необхідно задати рівень значимості а (невелика ймовірність, наприклад, 0,05 або 0,01) і число ступенів свободи. При перевірці статистичної значущості коефіцієнтів лінійної
  10. Приклади з практики
    Для демонстрації можливостей описаного підходу звернемося до прикладу реінжинірингу, проведеного в трьох американських банках: CoreStates Financial Corporation (Філадельфія, штат Пенсільванія), Lincoln First (Ро- честер, штат Нью-Йорк), Star Banc Corporation (Цинциннаті, штат Огайо). Вибір саме цих організацій був продиктований видатними показниками, досягнутими ними в період, безпосередньо
  11. Додаток 1 Обсяг виданих іпотечних земельних позик в Росії в період з 1867 р по 1877р.
    Роки Обсяг позик, млн руб. 1867 99,6 1868 104,8 1869 112,2 1870 121,5 1871 145,2 1872 173,5 1873 211,0 1874 294,9 1875 338,4 1876 380,8 1877 415,0 Джерело інформації: Мехряков В. Д. Історія кредитних установ і сучасний стан банківської системи Росії. М .: ІЕ РАН, 1995, с. 45.
  12. § 5. Інтервальні оцінки коефіцієнтів теоретичного рівняння регресії
    За аналогією з парної регресією після визначення точкових оцінок bj коефіцієнтів вj (j = 1, 2, ..., m) теоретичного рівняння регресії можуть бути розраховані інтервальні оцінки зазначених коефіцієнтів. Довірчий інтервал, що накриває з надійністю 1 - а невідоме значення параметра в j, визначається нерівністю: {foto104} де {foto105} - критична точка розподілу
  13. Питання для обговорення
    Поясніть, чим викликана поява в моделі парної регресії стохастичною змінною s? Чому перед побудовою моделі парної лінійної регресії необхідно розраховувати коефіцієнт кореляції? Поясніть зміст поняття «число ступенів свободи». За якими обчисленнями можна судити про значимість моделі в цілому? Навіщо необхідно розраховувати t-критерій Стьюдента? Навіщо необхідно оцінювати інтервали
  14. рекомендована література
    Гел'вановскій М. І. Про стратегію підвищення конкурентоспроможності російської економіки: Науковий доповідь в Державній Думі РФ // Російський економічний журнал. 2000. № 7. Гел'вановскій М. І., Жуковська В. М., Бушмарін І. В. та ін. Конкурентоспроможність Росії в 90-і роки. Міжкраїнну макроекономічний аналіз. М .: ІСЕМВ РАН, 2000. Конкурентоспроможність Росії в глобальному економічному